Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 96, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101159

RESUMO

BACKGROUND: Mossy cells comprise a large fraction of excitatory neurons in the hippocampal dentate gyrus, and their loss is one of the major hallmarks of temporal lobe epilepsy (TLE). The vulnerability of mossy cells in TLE is well known in animal models as well as in patients; however, the mechanisms leading to cellular death is unclear. RESULTS: Transient receptor potential melastatin 4 (TRPM4) is a Ca2+-activated non-selective cation channel regulating diverse physiological functions of excitable cells. Here, we identified that TRPM4 is present in hilar mossy cells and regulates their intrinsic electrophysiological properties including spontaneous activity and action potential dynamics. Furthermore, we showed that TRPM4 contributes to mossy cells death following status epilepticus and therefore modulates seizure susceptibility and epilepsy-related memory deficits. CONCLUSIONS: Our results provide evidence for the role of TRPM4 in MC excitability both in physiological and pathological conditions.


Assuntos
Epilepsia do Lobo Temporal , Animais , Potenciais de Ação , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Fibras Musgosas Hipocampais/metabolismo , Fibras Musgosas Hipocampais/patologia , Canais de Cátion TRPM/metabolismo
2.
Neurochem Int ; 158: 105378, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753511

RESUMO

Temporal lobe epilepsy (TLE) is the most common form of focal epilepsies. Pharmacological treatment with anti-seizure drugs (ASDs) remains the mainstay in epilepsy management. Levetiracetam (LEV) is a second-generation ASD with a novel SV2A protein target and is indicated for treating focal epilepsies. While there is considerable literature in acute models, its effect in chronic epilepsy is less clear. Particularly, its effects on neuronal excitability, synaptic plasticity, adult hippocampal neurogenesis, and histological changes in chronic epilepsy have not been evaluated thus far, which formed the basis of the present study. Six weeks post-lithium-pilocarpine-induced status epilepticus (SE), epileptic rats were injected with levetiracetam (54 mg/kg b.w. i.p.) once daily for two weeks. Following LEV treatment, Schaffer collateral - CA1 (CA3-CA1) synaptic plasticity and structural changes in hippocampal subregions CA3 and CA1 were evaluated. The number of doublecortin (DCX+) and reelin (RLN+) positive neurons was estimated. Further, mossy fiber sprouting was evaluated in DG by Timm staining, and splash test was performed to assess the anxiety-like behavior. Chronic epilepsy resulted in decreased basal synaptic transmission and increased paired-pulse facilitation without affecting post-tetanic potentiation and long-term potentiation. Moreover, chronic epilepsy decreased hippocampal subfields volume, adult hippocampal neurogenesis, and increased reelin expression and mossy fiber sprouting with increased anxiety-like behavior. LEV treatment restored basal synaptic transmission and paired-pulse facilitation ratio in CA3-CA1 synapses. LEV also restored the CA1 subfield volume in chronic epilepsy. LEV did not affect epilepsy-induced abnormal adult hippocampal neurogenesis, ectopic migration of newborn granule cells, mossy fiber sprouting in DG, and anxiety-like behavior. Our results indicate that in addition to reducing seizures, LEV has favorable effects on synaptic transmission and structural plasticity in chronic epilepsy. These findings add new dimensions to the use of LEV in chronic epilepsy and paves way for further research into its effects on cognition and affective behavior.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Giro Denteado/patologia , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Hipocampo/patologia , Levetiracetam/farmacologia , Fibras Musgosas Hipocampais/patologia , Fibras Musgosas Hipocampais/fisiologia , Plasticidade Neuronal/fisiologia , Ratos
3.
J Mol Neurosci ; 72(6): 1243-1258, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35618880

RESUMO

Neuronal hyperactivation of the mTOR signaling pathway may play a role in driving the pathological sequelae that follow status epilepticus. Animal studies using pharmacological tools provide support for this hypothesis, however, systemic inhibition of mTOR-a growth pathway active in every mammalian cell-limits conclusions on cell type specificity. To circumvent the limitations of pharmacological approaches, we developed a viral/genetic strategy to delete Raptor or Rictor, inhibiting mTORC1 or mTORC2, respectively, from excitatory hippocampal neurons after status epilepticus in mice. Raptor or Rictor was deleted from roughly 25% of hippocampal granule cells, with variable involvement of other hippocampal neurons, after pilocarpine status epilepticus. Status epilepticus induced the expected loss of hilar neurons, sprouting of granule cell mossy fiber axons and reduced c-Fos activation. Gene deletion did not prevent these changes, although Raptor loss reduced the density of c-Fos-positive granule cells overall relative to Rictor groups. Findings demonstrate that mTOR signaling can be effectively modulated with this approach and further reveal that blocking mTOR signaling in a minority (25%) of granule cells is not sufficient to alter key measures of status epilepticus-induced pathology. The approach is suitable for producing higher deletion rates, and altering the timing of deletion, which may lead to different outcomes.


Assuntos
Epilepsia do Lobo Temporal , Aves Predatórias , Estado Epiléptico , Animais , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Mamíferos , Camundongos , Fibras Musgosas Hipocampais/patologia , Fibras Musgosas Hipocampais/fisiologia , Pilocarpina , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Aves Predatórias/metabolismo , Estado Epiléptico/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
4.
Aging Cell ; 21(5): e13600, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35355405

RESUMO

Abnormal tau accumulation and spatial memory loss constitute characteristic pathology and symptoms of Alzheimer disease (AD). Yet, the intrinsic connections and the mechanism between them are not fully understood. In the current study, we observed a prominent accumulation of the AD-like hyperphosphorylated and truncated tau (hTau N368) proteins in hippocampal dentate gyrus (DG) mossy cells of 3xTg-AD mice. Further investigation demonstrated that the ventral DG (vDG) mossy cell-specific overexpressing hTau for 3 months induced spatial cognitive deficits, while expressing hTau N368 for only 1 month caused remarkable spatial cognitive impairment with more prominent tau pathologies. By in vivo electrophysiological and optic fiber recording, we observed that the vDG mossy cell-specific overexpression of hTau N368 disrupted theta oscillations with local neural network inactivation in the dorsal DG subset, suggesting impairment of the ventral to dorsal neural circuit. The mossy cell-specific transcriptomic data revealed that multiple AD-associated signaling pathways were disrupted by hTau N368, including reduction of synapse-associated proteins, inhibition of AKT and activation of glycogen synthase kinase-3ß. Importantly, chemogenetic activating mossy cells efficiently attenuated the hTau N368-induced spatial cognitive deficits. Together, our findings indicate that the mossy cell pathological tau accumulation could induce the AD-like spatial memory deficit by inhibiting the local neural network activity, which not only reveals new pathogenesis underlying the mossy cell-related spatial memory loss but also provides a mouse model of Mossy cell-specific hTau accumulation for drug development in AD and the related tauopathies.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/patologia , Animais , Cognição , Disfunção Cognitiva/genética , Modelos Animais de Doenças , Transtornos da Memória/metabolismo , Camundongos , Camundongos Transgênicos , Fibras Musgosas Hipocampais/metabolismo , Fibras Musgosas Hipocampais/patologia , Proteínas tau/metabolismo
5.
J Neuropathol Exp Neurol ; 81(1): 27-47, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34865073

RESUMO

Diffusion tensor imaging (DTI) metrics are highly sensitive to microstructural brain alterations and are potentially useful imaging biomarkers for underlying neuropathologic changes after experimental and human traumatic brain injury (TBI). As potential imaging biomarkers require direct correlation with neuropathologic alterations for validation and interpretation, this study systematically examined neuropathologic abnormalities underlying alterations in DTI metrics in the hippocampus and cortex following controlled cortical impact (CCI) in rats. Ex vivo DTI metrics were directly compared with a comprehensive histologic battery for neurodegeneration, microgliosis, astrocytosis, and mossy fiber sprouting by Timm histochemistry at carefully matched locations immediately, 48 hours, and 4 weeks after injury. DTI abnormalities corresponded to spatially overlapping but temporally distinct neuropathologic alterations representing an aggregate measure of dynamic tissue damage and reorganization. Prominent DTI alterations of were observed for both the immediate and acute intervals after injury and associated with neurodegeneration and inflammation. In the chronic period, diffusion tensor orientation in the hilus of the dentate gyrus became prominently abnormal and was identified as a reliable structural biomarker for mossy fiber sprouting after CCI in rats, suggesting potential application as a biomarker to follow secondary progression in experimental and human TBI.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Imagem de Tensor de Difusão/métodos , Fibras Musgosas Hipocampais/patologia , Regeneração Nervosa/fisiologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley
6.
Cell Rep ; 36(11): 109702, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525354

RESUMO

Modulation of hippocampal dentate gyrus (DG) excitability regulates anxiety. In the DG, glutamatergic mossy cells (MCs) receive the excitatory drive from principal granule cells (GCs) and mediate the feedback excitation and inhibition of GCs. However, the circuit mechanism by which MCs regulate anxiety-related information routing through hippocampal circuits remains unclear. Moreover, the correlation between MC activity and anxiety states is unclear. In this study, we first demonstrate, by means of calcium fiber photometry, that MC activity in the ventral hippocampus (vHPC) of mice increases while they explore anxiogenic environments. Next, juxtacellular recordings reveal that optogenetic activation of MCs preferentially recruits GABAergic neurons, thereby suppressing GCs and ventral CA1 neurons. Finally, chemogenetic excitation of MCs in the vHPC reduces avoidance behaviors in both healthy and anxious mice. These results not only indicate an anxiolytic role of MCs but also suggest that MCs may be a potential therapeutic target for anxiety disorders.


Assuntos
Comportamento Animal/fisiologia , Hipocampo/metabolismo , Fibras Musgosas Hipocampais/patologia , Animais , Região CA1 Hipocampal/metabolismo , Cálcio/metabolismo , Dor Crônica/metabolismo , Dor Crônica/patologia , Giro Denteado/citologia , Modelos Animais de Doenças , Fibromialgia/metabolismo , Fibromialgia/patologia , Neurônios GABAérgicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética/métodos , Técnicas de Patch-Clamp
7.
Curr Neurovasc Res ; 18(4): 374-380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34538230

RESUMO

BACKGROUND: The mossy fiber sprouting (MFS) in the dentate gyrus is a common pathological change of epilepsy. Previous studies suggested that it is associated with drug-resistant epilepsy, and mossy cells control spontaneous seizures and spatial memory. METHODS: We investigated the correlations among cognitive impairment, MFS, seizure frequency and drug resistance in a rat model of epilepsy induced by lithium-pilocarpine. Phenytoin and phenobarbital were used to screen drug resistance. Cognitive function and MFS were detected through the novel object recognition (NOR) test, Morris water maze (MWM) test and Timm staining. RESULTS: The results showed that object memory and spatial memory functions were both significantly impaired in rats with epilepsy, and only spatial memory impairment was more severe in rats with drug-resistant epilepsy. More frequent spontaneous seizures and more obvious MFS were observed in the drug-resistant rats. The seizure frequency was significantly associated with the MWM performance but not with the NOR performance in rats with epilepsy. The degree of MFS was significantly associated with seizure frequency and spatial memory function. CONCLUSION: Taken together, these correlations among drug resistance, seizure frequency, spatial memory impairment and MFS suggested the possibility of a common pathological mechanism. More studies are needed to clarify the underlying mechanism behind these correlations and the detailed role of MFS in epilepsy. The mechanism of mossy cell change may be an important target for the treatment of seizures, drug resistance and cognitive dysfunction in patients with epilepsy.


Assuntos
Disfunção Cognitiva , Epilepsia , Animais , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/patologia , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/patologia , Humanos , Lítio/toxicidade , Fibras Musgosas Hipocampais/patologia , Pilocarpina/toxicidade , Ratos
8.
Epilepsia ; 62(10): 2539-2550, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34453315

RESUMO

OBJECTIVE: The pathoanatomical correlate of temporal lobe epilepsy is hippocampal sclerosis, characterized by selective neuronal death of mossy cells in the hilus and of pyramidal cells in cornu ammonis 1. Although granule cells survive, they lose mossy cells as a target and redirect their axons (mossy fibers) backward into the molecular cell layer. It has been assumed that this process results in excitatory circuits. We therefore examined whether sprouted mossy fibers form synaptic connection not only with excitatory granule cells but also with inhibitory interneurons, such as basket cells. METHODS: Resected hippocampal specimens of patients with hippocampal sclerosis were compared to controls of patients with extrahippocampal lesions with only mild sclerosis. Mossy fibers were traced with Neurobiotin or labeled against synaptoporin; inhibitory interneurons were labeled against parvalbumin. Synapses were examined with electron microscopy, labeled with γ-aminobutyric acid immunogold. RESULTS: Sprouted mossy fibers of epileptic hippocampi innervate not only excitatory granule cells but also inhibitory parvalbuminergic interneurons. Despite neuronal death in hippocampal sclerosis, the axonal plexus of inhibitory parvalbuminergic interneurons surrounding the granule cells is preserved. Connections of sprouted mossy fibers and inhibitory axon terminals were quantified, showing that the number of inhibitory axon terminals significantly exceeds the number of sprouted excitatory mossy fiber terminals (.03 boutons/µm vs. .11 boutons/µm; p < .001). SIGNIFICANCE: Although no definite conclusions regarding the function of our findings may be derived from this anatomical study, the observed aberrant connectivity might lead to an increased inhibition and synchronization of granule cells, because the preserved inhibitory interneurons show an additional innervation through sprouted mossy fibers. This might result in the instability of a previously balanced network.


Assuntos
Epilepsia do Lobo Temporal , Fibras Musgosas Hipocampais , Humanos , Fibras Musgosas Hipocampais/patologia , Células Piramidais , Esclerose/patologia , Sinapses/metabolismo
9.
PLoS One ; 16(6): e0239111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34086671

RESUMO

The Brain-Derived Neurotrophic Factor is one of the most important trophic proteins in the brain. The role of this growth factor in neuronal plasticity, in health and disease, has been extensively studied. However, mechanisms of epigenetic regulation of Bdnf gene expression in epilepsy are still elusive. In our previous work, using a rat model of neuronal activation upon kainate-induced seizures, we observed a repositioning of Bdnf alleles from the nuclear periphery towards the nuclear center. This change of Bdnf intranuclear position was associated with transcriptional gene activity. In the present study, using the same neuronal activation model, we analyzed the relation between the percentage of the Bdnf allele at the nuclear periphery and clinical and morphological traits of epilepsy. We observed that the decrease of the percentage of the Bdnf allele at the nuclear periphery correlates with stronger mossy fiber sprouting-an aberrant form of excitatory circuits formation. Moreover, using in vitro hippocampal cultures we showed that Bdnf repositioning is a consequence of transcriptional activity. Inhibition of RNA polymerase II activity in primary cultured neurons with Actinomycin D completely blocked Bdnf gene transcription and repositioning occurring after neuronal excitation. Interestingly, we observed that histone deacetylases inhibition with Trichostatin A induced a slight increase of Bdnf gene transcription and its repositioning even in the absence of neuronal excitation. Presented results provide novel insight into the role of BDNF in epileptogenesis. Moreover, they strengthen the statement that this particular gene is a good candidate to search for a new generation of antiepileptic therapies.


Assuntos
Axônios/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , Epilepsia do Lobo Temporal/genética , Convulsões/genética , Transcrição Gênica/genética , Animais , Epigênese Genética/genética , Epilepsia do Lobo Temporal/patologia , Masculino , Fibras Musgosas Hipocampais/patologia , Neurogênese/genética , Plasticidade Neuronal/genética , Ratos , Convulsões/patologia
10.
Sci Rep ; 11(1): 8535, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879805

RESUMO

BDNF plays a crucial role in the regulation of synaptic plasticity. It is synthesized as a precursor (proBDNF) that can be proteolytically cleaved to mature BDNF (mBDNF). Previous studies revealed a bidirectional mode of BDNF actions, where long-term potentiation (LTP) was mediated by mBDNF through tropomyosin related kinase (Trk) B receptors whereas long-term depression (LTD) depended on proBDNF/p75 neurotrophin receptor (p75NTR) signaling. While most experimental evidence for this BDNF dependence of synaptic plasticity in the hippocampus was derived from Schaffer collateral (SC)-CA1 synapses, much less is known about the mechanisms of synaptic plasticity, in particular LTD, at hippocampal mossy fiber (MF) synapses onto CA3 neurons. Since proBDNF and mBDNF are expressed most abundantly at MF-CA3 synapses in the rodent brain and we had shown previously that MF-LTP depends on mBDNF/TrkB signaling, we now explored the role of proBDNF/p75NTR signaling in MF-LTD. Our results show that neither acute nor chronic inhibition of p75NTR signaling impairs MF-LTD, while short-term plasticity, in particular paired-pulse facilitation, at MF-CA3 synapses is affected by a lack of functional p75NTR signaling. Furthermore, MF-CA3 synapses showed normal LTD upon acute inhibition of TrkB receptor signaling. Nonetheless, acute inhibition of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of both intracellular and extracellular proBDNF cleavage, impaired MF-LTD. This seems to indicate that LTD at MF-CA3 synapses involves BDNF, however, MF-LTD does not depend on p75NTRs. Altogether, our experiments demonstrate that p75NTR signaling is not warranted for all glutamatergic synapses but rather needs to be checked separately for every synaptic connection.


Assuntos
Região CA3 Hipocampal/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Fibras Musgosas Hipocampais/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Região CA3 Hipocampal/patologia , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Fibras Musgosas Hipocampais/patologia , Plasticidade Neuronal/fisiologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais
11.
Epilepsia ; 62(2): 517-528, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33400301

RESUMO

OBJECTIVE: Mutations of the cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders characterized by intractable epilepsy, intellectual disability, and autism. Multiple mouse models generated for mechanistic studies have exhibited phenotypes similar to some human pathological features, but none of the models has developed one of the major symptoms affecting CDKL5 deficiency disorder (CDD) patients: intractable recurrent seizures. As disrupted neuronal excitation/inhibition balance is closely associated with the activity of glutamatergic and γ-aminobutyric acidergic (GABAergic) neurons, our aim was to study the effect of the loss of CDKL5 in different types of neurons on epilepsy. METHODS: Using the Cre-LoxP system, we generated conditional knockout (cKO) mouse lines allowing CDKL5 deficiency in glutamatergic or GABAergic neurons. We employed noninvasive video recording and in vivo electrophysiological approaches to study seizure activity in these Cdkl5 cKO mice. Furthermore, we conducted Timm staining to confirm a morphological alteration, mossy fiber sprouting, which occurs with limbic epilepsy in both human and mouse brains. Finally, we performed whole-cell patch clamp in dentate granule cells to investigate cell-intrinsic properties and synaptic excitatory activity. RESULTS: We demonstrate that Emx1- or CamK2α-derived Cdkl5 cKO mice manifest high-frequency spontaneous seizure activities recapitulating the epilepsy of CDD patients, which ultimately led to sudden death in mice. However, Cdkl5 deficiency in GABAergic neurons does not generate such seizures. The seizures were accompanied by typical epileptic features including higher amplitude spikes for epileptiform discharges and abnormal hippocampal mossy fiber sprouting. We also found an increase in spontaneous and miniature excitatory postsynaptic current frequencies but no change in amplitudes in the dentate granule cells of Emx1-cKO mice, indicating enhanced excitatory synaptic activity. SIGNIFICANCE: Our study demonstrates that Cdkl5 cKO mice, serving as an animal model to study recurrent spontaneous seizures, have potential value for the pathological study of CDD-related seizures and for therapeutic innovation.


Assuntos
Síndromes Epilépticas/genética , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Proteínas Serina-Treonina Quinases/genética , Convulsões/genética , Espasmos Infantis/genética , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Giro Denteado/citologia , Giro Denteado/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Síndromes Epilépticas/metabolismo , Síndromes Epilépticas/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios GABAérgicos/patologia , Proteínas de Homeodomínio , Camundongos , Camundongos Knockout , Fibras Musgosas Hipocampais/patologia , Neurônios/metabolismo , Neurônios/patologia , Técnicas de Patch-Clamp , Prosencéfalo , Convulsões/metabolismo , Convulsões/fisiopatologia , Espasmos Infantis/metabolismo , Espasmos Infantis/fisiopatologia , Fatores de Transcrição
12.
Neurobiol Dis ; 148: 105183, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33207277

RESUMO

PURPOSE: It remains controversial whether neuronal damage and synaptic reorganization found in some forms of epilepsy are the result of an initial injury and potentially contributory to the epileptic condition or are the cumulative affect of repeated seizures. A number of reports of human and animal pathology suggest that at least some neuronal loss precedes the onset of seizures, but there is debate over whether there is further damage over time from intermittent seizures. In support of this latter hypothesis are MRI studies in people that show reduced hippocampal volumes and cortical thickness with longer durations of the disease. In this study we addressed the question of neuronal loss from intermittent seizures using kindled rats (no initial injury) and rats with limbic epilepsy (initial injury). METHODS: Supragranular mossy fiber sprouting, hippocampal neuronal densities, and subfield area measurements were determined in rats with chronic limbic epilepsy (CLE) that developed following an episode of limbic status epilepticus (n = 25), in kindled rats (n = 15), and in age matched controls (n = 20). To determine whether age or seizure frequency played a role in the changes, CLE and kindled rats were further classified by seizure frequency (low/high) and the duration of the seizure disorder (young/old). RESULTS: Overall there was no evidence for progressive neuronal loss from recurrent seizures. Compared with control and kindled rats, CLE animals showed increased mossy fiber sprouting, decreased neuronal numbers in multiple regions and regional atrophy. In CLE, but not kindled rats: 1) Higher seizure frequency was associated with greater mossy fiber sprouting and granule cell dispersion; and 2) greater age with seizures was associated with decreased hilar densities, and increased hilar areas. There was no evidence for progressive neuronal loss, even with more than 1000 seizures. CONCLUSION: These findings suggest that the neuronal loss associated with limbic epilepsy precedes the onset of the seizures and is not a consequence of recurrent seizures. However, intermittent seizures do cause other structural changes in the brain, the functional consequences of which are unclear.


Assuntos
Epilepsias Parciais/patologia , Hipocampo/patologia , Sistema Límbico/fisiopatologia , Neurônios/patologia , Convulsões/patologia , Estado Epiléptico/patologia , Animais , Progressão da Doença , Epilepsias Parciais/fisiopatologia , Excitação Neurológica , Fibras Musgosas Hipocampais/patologia , Neurópilo/patologia , Ratos , Recidiva , Convulsões/fisiopatologia , Estado Epiléptico/fisiopatologia
13.
J Neuroinflammation ; 17(1): 44, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005260

RESUMO

BACKGROUND: Each year in the USA, over 2.4 million people experience mild traumatic brain injury (TBI), which can induce long-term neurological deficits. The dentate gyrus of the hippocampus is notably susceptible to damage following TBI, as hilar mossy cell changes in particular may contribute to post-TBI dysfunction. Moreover, microglial activation after TBI may play a role in hippocampal circuit and/or synaptic remodeling; however, the potential effects of chronic microglial changes are currently unknown. The objective of the current study was to assess neuropathological and neuroinflammatory changes in subregions of the dentate gyrus at acute to chronic time points following mild TBI using an established model of closed-head rotational acceleration induced TBI in pigs. METHODS: This study utilized archival tissue of pigs which were subjected to sham conditions or rapid head rotation in the coronal plane to generate mild TBI. A quantitative assessment of neuropathological changes in the hippocampus was performed via immunohistochemical labeling of whole coronal tissue sections at 3 days post-injury (DPI), 7 DPI, 30 DPI, and 1 year post-injury (YPI), with a focus on mossy cell atrophy and synaptic reorganization, in context with microglial alterations (e.g., density, proximity to mossy cells) in the dentate gyrus. RESULTS: There were no changes in mossy cell density between sham and injured animals, indicating no frank loss of mossy cells at the mild injury level evaluated. However, we found significant mossy cell hypertrophy at 7 DPI and 30 DPI in anterior (> 16% increase in mean cell area at each time; p = <  0.001 each) and 30 DPI in posterior (8.3% increase; p = <  0.0001) hippocampus. We also found dramatic increases in synapsin staining around mossy cells at 7 DPI in both anterior (74.7% increase in synapsin labeling; p = <  0.0001) and posterior (82.7% increase; p = < 0.0001) hippocampus. Interestingly, these morphological and synaptic alterations correlated with a significant change in microglia in proximity to mossy cells at 7 DPI in anterior and at 30 DPI in the posterior hippocampus. For broader context, while we found that there were significant increases in microglia density in the granule cell layer at 30 DPI (anterior and posterior) and 1 YPI (posterior only) and in the molecular layer at 1 YPI (anterior only), we found no significant changes in overall microglial density in the hilus at any of the time points evaluated post-injury. CONCLUSIONS: The alterations of mossy cell size and synaptic inputs paired with changes in microglia density around the cells demonstrate the susceptibility of hilar mossy cells after even mild TBI. This subtle hilar mossy cell pathology may play a role in aberrant hippocampal function post-TBI, although additional studies are needed to characterize potential physiological and cognitive alterations.


Assuntos
Concussão Encefálica/patologia , Tamanho Celular , Giro Denteado/patologia , Fibras Musgosas Hipocampais/patologia , Sinapses/patologia , Animais , Traumatismos Cranianos Fechados/patologia , Ativação de Macrófagos , Masculino , Microglia , Suínos , Porco Miniatura , Sinapsinas/metabolismo
14.
CNS Neurosci Ther ; 26(1): 101-116, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31179640

RESUMO

AIMS: Semaphorin7A (Sema7A) plays an important role in the immunoregulation of the brain. In our study, we aimed to investigate the expression patterns of Sema7A in epilepsy and further explore the roles of Sema7A in the regulation of seizure activity and the inflammatory response in PTZ-kindled epileptic rats. METHODS: First, we measured the Sema7A expression levels in patients with temporal lobe epilepsy (TLE) and in rats of a PTZ-kindled epilepsy rat model. Second, to explore the role of Sema7A in the regulation of seizure activity, we conducted epilepsy-related behavioral experiments after knockdown and overexpression of Sema7A in the rat hippocampal dentate gyrus (DG). Possible Sema7A-related brain immune regulators (eg, ERK phosphorylation, IL-6, and TNF-α) were also investigated. Additionally, the growth of mossy fibers was visualized by anterograde tracing using injections of biotinylated dextran amine (BDA) into the DG region. RESULTS: Sema7A expression was markedly upregulated in the brain tissues of TLE patients and rats of the epileptic model after PTZ kindling. After knockdown of Sema7A, seizure activity was suppressed based on the latency to the first epileptic seizure, number of seizures, and duration of seizures. Conversely, overexpression of Sema7A promoted seizures. Overexpression of Sema7A increased the expression levels of the inflammatory cytokines, IL-6 and TNF-α, ERK phosphorylation, and growth of mossy fibers in PTZ-kindled epileptic rats. CONCLUSION: Sema7A is upregulated in the epileptic brain and plays a potential role in the regulation of seizure activity in PTZ-kindled epileptic rats, which may be related to neuroinflammation. Sema7A promotes the inflammatory cytokines TNF-α and IL-6 as well as the growth of mossy fibers through the ERK pathway, suggesting that Sema7A may promote seizures by increasing neuroinflammation and activating pathological neural circuits. Sema7A plays a critical role in epilepsy and could be a potential therapeutic target for this neurological disorder.


Assuntos
Antígenos CD/genética , Convulsivantes , Pentilenotetrazol , Convulsões/genética , Semaforinas/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Giro Denteado/metabolismo , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Proteínas Ligadas por GPI/genética , Técnicas de Silenciamento de Genes , Humanos , Interleucina-6/genética , Excitação Neurológica , Sistema de Sinalização das MAP Quinases , Masculino , Fibras Musgosas Hipocampais/patologia , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/psicologia , Fator de Necrose Tumoral alfa/genética , Regulação para Cima , Adulto Jovem
15.
Sci Rep ; 9(1): 19616, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873156

RESUMO

Aging is associated with functional alterations of synapses thought to contribute to age-dependent memory impairment (AMI). While therapeutic avenues to protect from AMI are largely elusive, supplementation of spermidine, a polyamine normally declining with age, has been shown to restore defective proteostasis and to protect from AMI in Drosophila. Here we demonstrate that dietary spermidine protects from age-related synaptic alterations at hippocampal mossy fiber (MF)-CA3 synapses and prevents the aging-induced loss of neuronal mitochondria. Dietary spermidine rescued age-dependent decreases in synaptic vesicle density and largely restored defective presynaptic MF-CA3 long-term potentiation (LTP) at MF-CA3 synapses (MF-CA3) in aged animals. In contrast, spermidine failed to protect CA3-CA1 hippocampal synapses characterized by postsynaptic LTP from age-related changes in function and morphology. Our data demonstrate that dietary spermidine attenuates age-associated deterioration of MF-CA3 synaptic transmission and plasticity. These findings provide a physiological and molecular basis for the future therapeutic usage of spermidine.


Assuntos
Envelhecimento/metabolismo , Região CA3 Hipocampal/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Fibras Musgosas Hipocampais/metabolismo , Espermidina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Animais , Região CA3 Hipocampal/patologia , Camundongos , Fibras Musgosas Hipocampais/patologia , Vesículas Sinápticas/patologia
16.
Acta Neuropathol Commun ; 7(1): 29, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819250

RESUMO

The deposition of tau pathology in Alzheimer's disease (AD) may occur first in axons of neurons and then progress back into the cell bodies to form neurofibrillary tangles, however, studies have not directly analyzed this relationship in relatively discrete circuits within the human hippocampus. In the early phases of tau deposition, both AT8 phosphorylation and exposure of the amino terminus of tau occurs in tauopathies, and these modifications are linked to mechanisms of synaptic and axonal dysfunction. Here, we examined the localization of these tau pathologies in well-characterized post-mortem human tissue samples from the hippocampus of 44 cases ranging between non-demented and mild cognitively impaired to capture a time at which intrahippocampal pathways show a range in the extent of tau deposition. The tissue sections were analyzed for AT8 (AT8 antibody), amino terminus exposure (TNT2 antibody), and amyloid-ß (MOAB2 antibody) pathology in hippocampal strata containing the axons and neuronal cell bodies of the CA3-Schaffer collateral and dentate granule-mossy fiber pathways. We show that tau pathology first appears in the axonal compartment of affected neurons in the absence of observable tau pathology in the corresponding cell bodies in several cases. Additionally, deposition of tau in these intrahippocampal pathways was independent of the presence of Aß plaques. We confirmed that the majority of tau pathology positive neuropil threads were axonal in origin and not dendritic using an axonal marker (i.e. SMI312 antibody) and somatodendritic marker (i.e. MAP2 antibody). Taken together, these results support the hypothesis that AT8 phosphorylation and amino terminus exposure are early pathological events and that the deposition of tau pathology, at least in the studied pathways, occurs first in the axonal compartment prior to observable pathology in the somata. These findings highlight the importance on targeting tau deposition, ideally in the initial phases of its deposition in axons.


Assuntos
Axônios/patologia , Dendritos/patologia , Hipocampo/patologia , Fibras Musgosas Hipocampais/patologia , Tauopatias/patologia , Proteínas tau , Idoso , Idoso de 80 Anos ou mais , Axônios/metabolismo , Dendritos/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Fibras Musgosas Hipocampais/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo
17.
J Prev Alzheimers Dis ; 6(2): 78-84, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30756113

RESUMO

BACE1 is the rate-limiting enzyme for the production of the Aß peptide that forms amyloid plaques in Alzheimer's disease (AD). Small molecule inhibitors of BACE1 are being tested in clinical trials for AD, but the safety and efficacy of BACE1 inhibition has yet to be fully explored. Knockout of the Bace1 gene in the germline of mice causes multiple neurological phenotypes, suggesting that BACE1 inhibition could be toxic. However, these phenotypes could be the result of BACE1 deficiency during development rather than due to the lack of BACE1 function in the adult. To address this problem, we generated tamoxifen-inducible conditional BACE1 knockout mice in which the Bace1 gene may be deleted in the whole body of the adult at will. Importantly, the adult conditional BACE1 knockout mice largely lack phenotypes, indicating that many BACE1 functions are not required in the adult organism. However, a germline phenotype was observed after BACE1 knockout in the adult: reduced length and disorganization of the hippocampal mossy fiber infrapyramidal bundle comprised of axons of dentate gyrus granule cells. The infrapyramidal bundle abnormality correlated with reduced proteolytic processing of the neural cell adhesion protein CHL1 that is involved in axonal guidance. We conclude that BACE1 inhibition in the adult mouse brain does not lead to the phenotypes associated with BACE1 deficiency during embryonic and postnatal development. However, adult conditional BACE1 knockout mice also suggest that BACE1 inhibitor drugs may disrupt the organization of an axonal pathway in the hippocampus, an important structure for learning and memory. Here, I review the adult conditional BACE1 knockout results and consider their implications for BACE1 inhibitor clinical trials.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/genética , Orientação de Axônios/genética , Cognição , Giro Denteado/patologia , Memória , Fibras Musgosas Hipocampais/patologia , Animais , Axônios/patologia , Moléculas de Adesão Celular/metabolismo , Ensaios Clínicos como Assunto , Giro Denteado/citologia , Técnicas de Inativação de Genes , Hipocampo/patologia , Humanos , Aprendizagem , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Fenótipo
18.
Biochem Biophys Res Commun ; 508(4): 1082-1087, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30553452

RESUMO

B23, also known as nucleophosmin (NPM), is multifunctional protein directly implicated in cell proliferation, cell cycle progression, and cell survival. In the current study, in addition to confirming its anti-apoptotic function in neuronal survival, we demonstrated that the spatial-temporal expression profile of B23 during development of hippocampal neurons is high in the embryonic stage, down-regulated after birth, and preferentially localized at the tips of growing neuritis and branching points. Overexpression of B23 promotes axon growth with abundant branching points in growing hippocampal neurons, but depletion of B23 impairs axon growth, leading to neuronal death. Following injury to the trisynaptic path in hippocampal slice, overexpression of B23 remarkably increased the number and length of regenerative fibers in the mossy fiber path. Our study suggests that B23 expression in developing neurons is essential for neuritogenesis and axon growth and that up-regulation of B23 may be a strategy for enhancing the reconstitution of synaptic paths after injury to hippocampal synapses.


Assuntos
Hipocampo/lesões , Hipocampo/metabolismo , Proteínas Nucleares/metabolismo , Sinapses/metabolismo , Animais , Axônios/metabolismo , Morte Celular , Camundongos , Fibras Musgosas Hipocampais/metabolismo , Fibras Musgosas Hipocampais/patologia , Regeneração Nervosa , Nucleofosmina , Ratos
19.
J Clin Invest ; 129(1): 163-168, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30352049

RESUMO

Angelman syndrome (AS) is a neurodevelopmental disorder in which epilepsy is common (~90%) and often refractory to antiepileptics. AS is caused by mutation of the maternal allele encoding the ubiquitin protein ligase E3A (UBE3A), but it is unclear how this genetic insult confers vulnerability to seizure development and progression (i.e., epileptogenesis). Here, we implemented the flurothyl kindling and retest paradigm in AS model mice to assess epileptogenesis and to gain mechanistic insights owed to loss of maternal Ube3a. AS model mice kindled similarly to wild-type mice, but they displayed a markedly increased sensitivity to flurothyl-, kainic acid-, and hyperthermia-induced seizures measured a month later during retest. Pathological characterization revealed enhanced deposition of perineuronal nets in the dentate gyrus of the hippocampus of AS mice in the absence of overt neuronal loss or mossy fiber sprouting. This pro-epileptogenic phenotype resulted from Ube3a deletion in GABAergic but not glutamatergic neurons, and it was rescued by pancellular reinstatement of Ube3a at postnatal day 21 (P21), but not during adulthood. Our results suggest that epileptogenic susceptibility in AS patients is a consequence of the dysfunctional development of GABAergic circuits, which may be amenable to therapies leveraging juvenile reinstatement of UBE3A.


Assuntos
Síndrome de Angelman , Fibras Musgosas Hipocampais , Convulsões , Ubiquitina-Proteína Ligases , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Síndrome de Angelman/patologia , Síndrome de Angelman/terapia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Fibras Musgosas Hipocampais/metabolismo , Fibras Musgosas Hipocampais/patologia , Convulsões/genética , Convulsões/metabolismo , Convulsões/patologia , Convulsões/terapia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
20.
Brain Res ; 1701: 28-35, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30025975

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) has demonstrated antiepileptic efficacy, especially for mesial temporal lobe epilepsy (MTLE). Mossy fiber sprouting (MFS) is involved in the pathogenesis of MTLE, and Sema-3A and GAP-43 are pivotal regulators of MFS. This study investigated the effects of ANT-DBS on MFS and expression levels of Sema-3A and GAP-43 as a possible mechanism for seizure suppression. METHODS: Adult male Sprague-Dawley rats were randomly divided into four groups: (1) control (saline injection), (2) KA (kainic acid injection), (3) KA + Sham-DBS (electrode implantation without stimulation), and (4) KA + DBS (electrode implantation with stimulation). Video electroencephalography (EEG) was used to ensure model establishment and monitor seizure frequency, latency, and severity (Racine stage). Chronic ANT stimulation was conducted for 35 days in the KA + DBS group, and MFS compared to the other groups by quantitative Timm staining. Sema-3A and GAP-43 expression levels in the hippocampal formation were evaluated in all groups with western blot. RESULTS: The latency period was significantly prolonged and spontaneous seizure frequency reduced in the KA + DBS group compared to KA and KA + Sham-DBS groups. Staining scores for MFS in CA3 and dentate gyrus (DG) were significantly lower in the KA + DBS group. The KA + DBS group also exhibited decreased GAP-43 expression and increased Sema-3A expression compared to KA and KA + Sham-DBS groups. CONCLUSION: These results suggest that ANT-DBS extends the latent period following epileptogenic stimulation by impeding MFS through modulation of GAP-43 and Sema-3A expression.


Assuntos
Núcleos Anteriores do Tálamo/metabolismo , Epilepsia/patologia , Fibras Musgosas Hipocampais/efeitos dos fármacos , Animais , Núcleo Celular/patologia , Estimulação Encefálica Profunda/métodos , Giro Denteado/efeitos dos fármacos , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/patologia , Proteína GAP-43/metabolismo , Proteína GAP-43/fisiologia , Hipocampo/efeitos dos fármacos , Ácido Caínico/farmacologia , Masculino , Fibras Musgosas Hipocampais/patologia , Ratos , Ratos Sprague-Dawley , Convulsões/patologia , Semaforina-3A/metabolismo , Semaforina-3A/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...